
JOPA: Efficient Ontology-based Information
System Design

Martin Ledvinka1 and Bogdan Kostov1 and Petr Křemen1

Czech Technical University in Prague, Czech Republic
martin.ledvinka@fel.cvut.cz, bogdan.kostov@fel.cvut.cz,

petr.kremen@fel.cvut.cz

Abstract. Creating applications on top of linked data and ontologies
brings many difficulties. The applications are either generic (and thus not
appealing to end-users), or bound to ontology structure, change of which
breaks the application. We present JOPA, a tool that formalizes the
contract between the application and the ontology, combining advantages
of both worlds. JOPA is a persistence framework for Java applications,
providing formalized object-ontological mapping, transactions, access to
multiple repository contexts, and producing linked data. The system is
demonstrated on a real use-case of a reporting tool that we develop for
the aviation industry.

1 Introduction

Keeping object-oriented applications aligned with underlying ontology commit-
ments is a challenging task. Various ontology access libraries have been intro-
duced over the last decade (these are briefly discussed in Section 2.1). Basically,
developers either use too low-level API that is verbose and hard to use and
maintain, or a high-level API that tries to map ontology structure to the object
model which is necessarily lossy and dependent on the ontology structure.

We introduce the Java OWL Persistence API (JOPA), a tool that benefits
from both approaches – it provides an object-ontological mapping, but also con-
structs to access all property values as well as inferred property values in an
analogous manner. Furthermore, to allow easy maintenance of the application
access to evolving ontologies, a formal contract between an object-oriented ap-
plication and the ontology is set up. The formal contract consists of a set of
integrity constraints describing the fixed part of the ontology relevant for the
application, as introduced in [9]. An advantage of this explicit contract is that
it allows rechecking ontology compliance with the application upon data update
(a third-party change), i.e. before the application itself tries to access the data.
Integrity constraint violation signalizes to the application designer the need for
formal contract redesign (or even ontology redesign).

This demo shows the features of JOPA on a simplified application for avia-
tion safety reporting. The full application is designed and implemented in coop-
eration with several stakeholders in the Czech aviation industry, including Air
Navigation Services of the Czech Republic, or Prague Airport, for their future
use.



2 Ontology Access using JOPA

Let us briefly discuss first the JOPA framework itself and then delve into de-
scription of the example application and how it uses JOPA’s features.

2.1 Application Access to Ontologies

There are two main approaches to application access to ontologies.
A generic one, where data in ontologies are manipulated without any as-

sumptions about their nature. Such approach is represented for example by OWL
API [7] or Sesame API [2]. This approach is suitable mostly for generic appli-
cations like ontology editors, because its use for domain-specific business logic
requires a lot of boilerplate code.

A domain-specific approach to ontology access makes use of object-ontological
mapping (OOM), which maps ontological constructs to concepts of the object-
oriented paradigm. OOM enables the application to be written in object-oriented
style, which is by far the most widespread programming paradigm nowadays.
Frameworks exploiting OOM are for example Empire [5] or AliBaba [1].

More thorough discussion of both approaches can be found in [9] or [11].

2.2 JOPA features

JOPA tries to take the best of both the domain-specific and generic approaches.
It employs a formally defined object-ontological mapping, while providing a (lim-
ited) access to the more dynamic aspects of ontologies. Let us now briefly de-
scribe the main distinguishing features of JOPA. More detailed explanation of
its architecture and features can be found in [9], [10] and [11].

Formal OOM In contrast to ad hoc mapping used by Empire or AliBaba, the
object-ontological mapping in JOPA is based on a formally defined contract
between the ontology and the object model. This contract is described by a set
of OWL integrity constraints [13], which provide a closed-world view of a part of
otherwise open-world assuming ontology. The OOM does not attempt to provide
a complete mapping of OWL to Java, so for example only named classes and
properties are supported.

Explicit inferred knowledge JOPA provides explicit access to inferred knowledge
in the object model. Inferred statements cannot be treated as asserted ones
on the object level, because they cannot be directly changed. Therefore, JOPA
enables the developer to explicitly mark attributes as inferred, which means they
may contain inferred knowledge and are thus read-only.

Types and properties Besides mapping properties to attributes, JOPA also pro-
vides access to the more dynamic parts of the ontology. Namely, every instance
can contain a set of ontological types (@Types field), to which the individual rep-
resented by this instance belongs. It can also contain a map of property values,
which are not mapped by the object model. This gives, although limited, access
to the ontological structure which is not directly compiled into the object model.



Separate storage access By separating the actual storage access into the Onto-
Driver layer, JOPA enables the application to easily switch between different
storages. Such change thus comprises merely modifying a few lines in a configu-
ration file. Similarly, Empire [5] uses pluggable storage access components.

JPA features JOPA was inspired by the JPA specification [8] for object-relational
mapping in Java. As such, it supports transactional processing, caching, cascad-
ing. JOPA also supports executing SPARQL [6] and SPARQL Update [3] state-
ments and mapping their results directly to entities. While the API of JOPA is
inspired by JPA, it is not exactly the same. This is because it tries to take into
account features specific to ontologies, like contexts and support for types and
unmapped properties. Empire, on the other hand, goes even further and does
actually implement a subset of the JPA specification.

Contexts Some ontological storages support the notion of RDF named graphs,
which enable data to be further structured. JOPA enables the application to
exploit this feature both on object and attribute level.

2.3 Demo Application

The demo application showcases all of the features described in Section 2.2.
The application is build for a use case in aviation safety. When a safety man-
ager/aviation authority performs a safety audit, a checklist of several questions
guides him/her through the audit agenda. The questions are linked to expected
answers and whenever the actual answer does not match the expected one, it
signalizes a possible safety issue.

The audit scenario is only a small part of a much larger field of aviation
safety, which we are currently tackling in one of our projects1. The whole do-
main is described by a documentation ontology, which is based on the unified
foundational ontology (UFO) [4].

For the purposes of our application, we create a set of integrity constraints [13],
which restricts a part of the documentation ontology in order to make it suitable
for an object-oriented application.

In the demo, a user can create audits, which are documented by reports.
Every report contains a set of records, which are question-answer pairs. The
records can be classified to express whether the answer was satisfactory or not.

From Ontology to Object Model To give a glimpse of the design process,
take for example the portion of the documentation ontology OD shown in Ta-
ble 1. A set SIC of integrity constraints provides a closed-world view on OD

for the purpose of our application. When an integrity constraint is violated, the
ontology becomes incompatible with the application.

1 For JOPA, this is actually its second deployment. An early prototype was used in a
tool called StruFail in the domain of structural failures of buildings.



OD = {Event v Entity,

Report v Entity,

Person v Agent,

> v ∀hasAuthor · Agent,

Report v ∃documents · Entity,

documents ≡ isDocumentedBy
−}

SIC = {Report v ∀documents · Event,

Report v (= 1 documents),

Report v ∀hasAuthor · Person,

Report v (= 1hasAuthor),

Report v ∃documents · Entity,

Audit v ∀isDocumentedBy · Report}
Table 1. OD represents an excerpt of the documentation ontology used in the demo
application. SIC depicts a set of OWL integrity constraints used as a contract between
the application (its object model) and the ontology.

Based on OD and SIC , transformation to the object-oriented paradigm yields
a model shown in Figure 1. The actual object model is generated from the
integrity constraints by the OWL2Java tool, which is a part of JOPA.

Fig. 1. Object model of the demo application. Due to space restrictions, OD and SIC

capture only the Audit – Report – Person part of the model.

Demo Application Overview 2

To list all audits and reports, a SPARQL query is used, whose results are
directly mapped to the corresponding entities. While every report is related
to an audit by an explicit assertion, the inverse relation is inferred, as it is
not necessary to maintain both directions in the relationship. All operations on
reports are cascaded to the records they contain, so for example when a report
is persisted, all its records are persisted automatically as well. The same holds
for the record-answer relationship. Questions are managed separately, because
they can be reused by multiple reports.

Record classification is performed by adding the record individuals into OWL
classes using the @Types field. In addition to the mapped attributes, every audit
and record can also be enhanced with values of unmapped properties.

The demo application supports two storages - a Sesame storage and OWL
files accessed by OWL API. The Sesame storage supports contexts, which is
utilized by having the reports’ authors stored in a dedicated context. The OWL
API storage, on the other hand, is used by Pellet [12] to provide additional
inferred knowledge. In our instance, it enables to show reports for each audit by
exploiting the inverse isDocumentedBy property.

2 The demo application can be found at http://onto.fel.cvut.cz/eswc2016, its source
codes are available at https://github.com/kbss-cvut/jopa-examples.

http://onto.fel.cvut.cz/eswc2016
https://github.com/kbss-cvut/jopa-examples/tree/master/eswc2016


3 Conclusions

We have discussed the difficulties of application access to ontologies and pre-
sented the JOPA framework as a possible solutions to these issues. We have
demonstrated its viability as a persistence solution for ontology-based applica-
tions on a simplified demo application (a much more complex version of which
is currently being evaluated by project partners in the Czech Republic), which
nonetheless exploits most of the distinguishing features of JOPA.

Development of the aviation safety application has also shown us some short-
comings of JOPA, mainly its lack of support for OWL class subsumption (inher-
itance) and referential integrity. We plan to address these in our future work.

Acknowledgment This work was supported by grant No. GA 16-09713S Effi-
cient Exploration of Linked Data Cloud of the Grant Agency of the Czech Re-
public and by grant No.SGS16/229/OHK3/3T/13 Supporting ontological data
quality in information systems of the Czech Technical University in Prague.

References

1. AliBaba. online, https://bitbucket.org/openrdf/alibaba/
2. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture

for Storing and Querying RDF and RDF Schema. In: Proceedings of the First
International Semantic Web Conference on The Semantic Web. pp. 54–68 (2002)

3. Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update. Tech. rep., W3C (2013)
4. Giancarlo Guizzardi: Ontological Foundations for Structural Conceptual Models.

Ph.D. thesis, University of Twente (2005)
5. Grove, M.: Empire: RDF & SPARQL Meet JPA. semanticweb.com (April 2010),

http://semanticweb.com/empire-rdf-sparql-meet-jpa_b15617

6. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Tech. rep., W3C (2013)
7. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies.

Semantic Web – Interoperability, Usability, Applicability (2011)
8. JCP: JSR 317: JavaTM Persistence API, Version 2.0 (2009)
9. Křemen, P., Kouba, Z.: Ontology-Driven Information System Design. IEEE Trans-

actions on Systems, Man, and Cybernetics: Part C 42(3), 334–344 (May 2012),
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6011704

10. Ledvinka, M., Křemen, P.: JOPA: Developing Ontology-Based Information Sys-
tems. In: Proceedings of the 13th Annual Conference Znalosti 2014 (2014)

11. Ledvinka, M., Křemen, P.: JOPA: Accessing Ontologies in an Object-oriented Way.
In: Proceedings of the 17th International Conference on Enterprise Information
Systems (2015)

12. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Web Semantics: Science, Services and Agents on the World Wide Web
5(2), 51–53 (June 2007)

13. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity Constraints in OWL. In:
Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010), http://www.aaai.org/ocs/
index.php/AAAI/AAAI10/paper/view/1931

https://bitbucket.org/openrdf/alibaba/
http://semanticweb.com/empire-rdf-sparql-meet-jpa_b15617
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6011704
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1931

	JOPA: Efficient Ontology-based Information System Design

