
Computing Linked Data On-demand Using the
VOLT Proxy

Blake Regalia and Krzysztof Janowicz

STKO Lab, University of California, Santa Barbara, USA
blake@geog.ucsb.edu, janowicz@ucsb.edu

Abstract. The Linked Data paradigm has changed how data on the
Web is published, retrieved, and interlinked, thereby enabling modern
question answering systems and contributing to the spread of open data.
With the increasing size, interlinkage, and complexity of the Linked Data
cloud, the focus is now shifting towards strategies and technologies to en-
sure that Linked Data can also succeed as an infrastructure. This raises
questions about the sustainability of query endpoints, the reproducibil-
ity of scientific experiments conducted using Linked Data, the lack of
established quality metrics, as well as the need for improved ontology
alignment and query federation techniques. One core issue that needs to
be addressed is the trade-off between storing data and computing them
on-demand. Data that is derived from already stored data, changes fre-
quently in space and time, or is the output of some workflow, should
be computed. However, such functionality is not readily available on the
Linked Data cloud today. To address this issue, we have developed a
transparent SPARQL proxy that enables the on-demand computation
of Linked Data together with the provenance information required to
understand how the data were derived. Here, we demonstrate how the
proxy works under the hood by applying it to the computation of cardinal
directions between geographic features in DBpedia.

1 Motivation

Despite the rapid growth of Linked Data and tool chains for publishing, storing,
interlinking, and querying Linked Data, large-scale, real-world success stories are
emerging slowly. There are many reasons for this, e.g., the difficulty of maintain-
ing a scale-able SPARQL endpoint, and several approaches have been introduced
within the last few years to make the Linked Data cloud more sustainable [2].

We believe that one challenge that has not been addressed sufficiently is the
accuracy, completeness, and up-to-dateness of the data as such. From a user’s
perspective, it is often unclear why certain data are present while other data
are not, how much uncertainty is inherent in the queried (RDF) statements,
and how stable these statements are. More technically speaking, parts of this
challenge are rooted in the open question of which Linked Data triples should
be stored and which should be computed. Intuitively, data that is derived from
already stored data, that changes frequently in space and time, or is the result
of a sequence of workflow steps, should be computed. To give a simple example,



2 Blake Regalia and Krzysztof Janowicz

a property such as population density can be computed based on the area and
population. In contrast, if the density is stored, it needs to be kept in sync with
the changing population (and area) especially if multiple population values are
given, e.g., from different years or on the municipality and the metropolitan
level.

A similar example can be given for the completeness and accuracy cases.
DBpedia stores 133,941 cardinal direction triples such as dbr:San Francisco

dbp:northeast dbr:Berkeley, California. Why those triples exist and all
the billions of cardinal direction triples between other pairs of places do not,
remains unclear to the end user. Clearly, due to combinatorial explosion, it is
impossible to store all possible triples so they should instead be computed on-
demand. Furthermore, a simple experiment reveals that more than half of all car-
dinal direction relations currently stored in DBpedia are invalid or incorrect [1].

To address these and related challenges, we have developed a transparent
proxy that can sit in front of arbitrary SPARQL 1.1 endpoints to augment them
with computational capabilities by deriving triples and provenance records on-
demand.

In this demonstration, we show how to: define a computable property pro-
cedure using the VOLT language, compile it to RDF, invoke computation on
the procedure using real data from DBpedia, and inspect the results along with
their provenance metadata. The full video is available at: https://youtu.be/
EO2cD6Qy-Hc.

2 Demonstrating VOLT

In this section, we demonstrate how the transparent VOLT proxy works and
how it interacts with arbitrary SPARQL endpoints by applying it to the cardinal
directions use case introduced before.

2.1 Interface and Encapsulation

The VOLT proxy behaves transparently, making it appear to the user as though
they are directly querying the encapsulated SPARQL endpoint. However, a single
query issued by the end-user may prompt several interactions between the proxy
and the actual endpoint. As depicted in Figure 1, results from the original input
query are directly returned to the client.

2.2 The VOLT Language and Compiler

The VOLT proxy requires RDF statements in the triplestore’s model graph to fol-
low a strict ontology because those triples ultimately get translated into machine
code. Since the number of triples and nested blank nodes grows quickly with the
more sophisticated procedures, directly encoding procedural logic into RDF can
be a tedious and error-prone task for humans. Similar to the reasons that pro-
gramming languages were invented to provide a layer of abstraction between the
developer and assembly code, we have created a custom abstraction language
designed specifically to streamline the process of coding procedures and their

https://youtu.be/EO2cD6Qy-Hc
https://youtu.be/EO2cD6Qy-Hc


Computing Linked Data On-demand Using the VOLT Proxy 3

Fig. 1 A depiction of the interaction that occurs between the client, VOLT proxy and
encapsulated SPARQL endpoint.

embedded SPARQL queries. Aside from significantly reducing the amount of
code a developer has to write as well as improving its readability, the compiler
also performs optimizations such as data locality, parallelization, refactoring,
strength reduction, and so forth.

2.3 Creating a Procedure

For this demonstration, we start by defining a computable property using the
VOLT programming language. A computable property represents a potential
relation between two individuals. It defines all the criteria required by each the
subject and object in order for a particular directed relation to hold between
them. An input triple refers to a triple that functions as an input to a com-
putable property. It has an explicit RDF term for each the subject, predicate,
and object (i.e., it is not a pattern). We start the computable property definition
by declaring its name as an IRI, which acts as the predicate of an input triple
anytime the procedure gets invoked by a SPARQL query. In this demonstration,
the computable property is named stko:south, which will test if the object of
an input triple is south of its subject.

The PostGIS1 plugin we use for this demonstration simply translates Extensi-
ble Value Testing (EVT) function calls on RDF literals from the SPARQL query
into SQL strings and pipes them into a PostgreSQL2 child process on the host
machine, enabling a user to access the full domain of spatial functions provided
by PostGIS. For computing cardinal directions, we employ the ST Azimuth3

function to compute the clockwise angle from A to B in radians relative to true
north. With the help of some expressions, we can test if the radians returned by

1http://postgis.net/
2http://www.postgresql.org/
3http://postgis.net/docs/ST_Azimuth.html

http://postgis.net/
http://www.postgresql.org/
http://postgis.net/docs/ST_Azimuth.html


4 Blake Regalia and Krzysztof Janowicz

the postgis:azimuth call falls within the range that our model will consider to
be stko:south [1].

2.4 Embedded SPARQL Queries

In order to compute the azimuth between two places, we need to obtain their
coordinates. Using DBpedia data, we can extract the Well-known Text (WKT)
from the geo:geometry property contained by each of the places we want to
compare. Instructing our procedure to fetch this data from the triplestore means
we will need to execute a SPARQL query at runtime. The VOLT language has
a few syntactic variations when it comes to embedding SPARQL queries into a
procedure’s code. In the video demonstration, we show the implicit syntax which
is the simplest way to obtain a value from one of the subject’s or object’s own
triples. In this case, we select the triple(s) having geo:geometry as the predicate.
Since a subject or object may contain more than one triple that share the same
predicate, VOLT will fork the execution of a procedure anytime a SPARQL
query returns more than one result. This ensures that every combination of
selections is treated to a procedure’s computation. Also, if any subject or object
in a computable property does not yield a result from the SPARQL query, for
example a place does not have the geo:geometry property, execution on that
input triple is cancelled.

2.5 Testing Relations Existentially

Computable properties can be used to explicitly test if a certain relation holds
between two named individuals. For our example, we will be asking if San
Diego is south of Yosemite National Park. The computable property we wrote,
stko:south, will be evaluated using these two places as the object and subject,
respectively. Since VOLT intends to act as transparently as possible, our modus
operandi is to issue SPARQL queries as though we are querying for triples that
may or may not exist in the triplestore. Therefore, to invoke computation on the
computable property method we created, a client simply issues an ASK query
containing a single triple whose predicate is the name of the property we want
to test, stko:south, and puts the URIs for the places of Yosemite National Park
and San Diego as the subject and object of the input triple. The benefit of this
approach is that a user does not need to be aware that they may be invoking
procedural computation in their query — although, they are able to discover all
procedures that the proxy can offer. If a user intends to discover which relations
exist between two entities, the proxy would have to test all possible procedures
against that subject-object pair to determine which ones should be materialized.
Such a request could cause unwanted delays during query execution. To address
this issue, the proxy will only test procedures when an explicit pattern is stated
in the query. This pattern requires a triple having a variable in the predicate
position, where that variable also appears in a triple that asserts its rdf:type.
The object of the predicate variable’s rdf:type represents the class of proce-
dures to invoke testing on. For example, dbr:San Diego ?rel dbr:Napa. ?rel a

stko:CardinalDirection tells the proxy to test all procedures that are declared



Computing Linked Data On-demand Using the VOLT Proxy 5

to be a type of stko:CardinalDirection and materialize the ones that evaluate
positive.

If the input triple already exists in either the source graph (e.g., the relation
is explicit) or the output graph (e.g., the relation was computed earlier), then
the proxy does not evaluate the associated procedure since the solution is al-
ready present in the triplestore. On the other hand, if the computable property
is determined to be viable for a given subject and object, i.e., if its procedure
evaluates to true, then the input triple is materialized and stored to a tem-
porary graph in the triplestore. By the time the proxy has finished evaluating
all procedures invoked by the client’s query, the proxy terminates its session by
issuing the original SPARQL query on the union of the source graph and out-
put graph(s), combining all source data with any triples that were derived by
computation.

3 Summary and Outlook

In this demo paper he have showcased the transparent VOLT proxy by apply-
ing it to the computation of cardinal directions between geographic features in
DBpedia. We have argued why it is important and often necessary to compute
data on-demand instead of storing it and have highlighted some of the imple-
mentation details underlying VOLT. Future work will focus on improving the
performance of the VOLT proxy (see [1] for first results), a library of commonly
used computable properties for the geo-sciences and beyond, and on an ontolog-
ical framework for caching.

References

1. Regalia, B., Janowicz, K., Gao, S.: VOLT: A Provenance-Producing, Transparent
SPARQL Proxy for the On-Demand Computation of Linked Data and its Appli-
cation to Spatiotemporally Dependent Data. In: M. D’Aquin, E. Blomqvist (eds.)
ESWC 2016. Springer LNCS (2016, forthcoming)

2. Rietveld, L., Verborgh, R., Beek, W., Vander Sande, M., Schlobach, S.: Linked
Data-as-a-Service: The Semantic Web Redeployed. In: The Semantic Web. Latest
Advances and New Domains - 12th European Semantic Web Conference, ESWC
2015, Portoroz, Slovenia,, pp. 471–487. Springer (2015)


	Computing Linked Data On-demand Using the VOLT Proxy
	Blake Regalia, Krzysztof Janowicz

