
Incorporating Functions in Mappings to Facilitate the
Uplift of CSV Files into RDF

Ademar Crotti Junior, Christophe Debruyne, Declan O’Sullivan

ADAPT Centre for Digital Content Technology Research, Knowledge & Data Engineering
Group, School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland

 {crottija,debruync,declan.osullivan}@scss.tcd.ie

Abstract. Many solutions have been developed to convert non-RDF data to
RDF. A common task during this conversion is applying data manipulation
functions to obtain the desired output. Depending on the data format of the
source to be transformed, one can rely on the underlying technology, such as
RDBMS for relational databases or XQuery for XML, to manipulate data - to a
certain extent - while generating RDF. For CSV files, however, there is no such
underlying technology. Instead, one has to resort to more elaborate Extract,
Transform and Load (ETL) processes, which can render the generation of RDF
more complex (in terms of number of steps), and therefore also less traceable
and transparent. One solution to this problem is the declaration and inclusion of
functions in mappings of non-RDF data to RDF. In this paper, we propose a
method to incorporate functions into mapping languages and demonstrate its vi-
ability in Digital Humanities use case.

Keywords. Linked Data; Mapping; Data Manipulation.

1 Introduction
The CSV file format is a convenient and popular way to exchange structured data, but
the semantics of the information captured in such files are not explicit. RDF, on the
other hand, provides one means to add meaning to data that software can process. The
process of converting data in any non-RDF format (e.g., CSV and relational data-
bases) into RDF is called uplift.

There are scenarios where it is necessary to manipulate data during the uplift pro-
cess. Depending on the source data format, this can be very straightforward. With
uplift languages for relational databases such as R2RML1, for example, one can rely
on the underlying RDBMS to support some data manipulation tasks (e.g., string con-
catenation). The same is true for XSPARQL [5], where one can use XQuery to ma-
nipulate the data contained in XML. Sometimes, however, relying on the underlying
technology is not sufficient [4]. For CSV datasets there is no such equivalent, stand-
ardized underlying technology. When data in CSV files has to be manipulated to gen-
erate RDF, one needs to resort to data pre- or post-processing. This increases com-
plexity in terms of number of steps necessary to generate RDF, and renders the whole

1 https://www.w3.org/TR/r2rml/

data processing “pipeline” less transparent. A solution to tackle this problem is to
capture these manipulations as functions in the mappings.

We propose a method to incorporate functions into mapping languages that draws
inspiration from, and generalizes ideas presented in [4]. To demonstrate our method,
we extend RML’s vocabulary and engine to include notions for function calls and
parameter bindings. The main contributions of this paper can be summarized as fol-
lows: i) a method to incorporate functions in a mapping language; ii) an implementa-
tion of the method extending RML; and iii) a demonstration of functions incorporated
into mappings applied to a real world dataset.

2 Related Work
One approach to support uplift is to use an annotation language to relate non-RDF
data to RDF (i.e., “mappings”), for which an engine is built. Examples of this ap-
proach include R2RML and R2RML-F [4] for relational databases; SML [3] for rela-
tional databases and CSV; and RML [1] and KR2RML [7] for an even wider array of
non-RDF data formats. These mapping languages usually have access to functionality
provided by the underlying technology of the non-RDF data source. For CSV files,
these do not exist and one has to apply data pre- or post-processing techniques, which
raises problems as explained in Section 1.

To the best of our knowledge, KR2RML is the only tool to support data manipula-
tion functions inside a mapping language that does not rely on the underlying tech-
nology. Though they provide an editor in which you can load data and input mappings
to create functions in Python to manipulate that data, once those functions are stored
several problems can be observed. First, a lot of the structured information containing
the function is captured as a string. This thus requires both parsing the file and that
string. Secondly, the mapping becomes rather complex, which makes it more difficult
for users to create similar mappings with other tools. Their editor, however, does
facilitate the mapping creation process for their mapping language. In [4] an extension
to R2RML called R2RML-F is proposed. R2RML-F adds supports for capturing do-
main knowledge inside the mapping language for relational databases. Unlike
KR2RML, functions in R2RML-F are captured as resources referred to by mappings
with the RDF data model, allowing functions to be reused in different mappings.

3 Incorporating Functions into Mapping Languages
In this section, we describe how we adopt ideas presented in [4] to develop a more
generic, usable and amenable approach to incorporate functions into mapping lan-
guages. These functions can be used to capture both domain knowledge (e.g., trans-
forming units) and other – more syntactic – data manipulation tasks (e.g., transform-
ing values to create valid URIs). Function names are unique and each function must
have one function name and one function body. A function body defines a function
with a return statement; parameters are optional.

Our proof-of-concept extends RML’s vocabulary and engine2 by introducing con-
struct for describing functions, function calls and parameter bindings. Listing 1 de-
fines a function. This function has one string as a parameter and returns a URL con-

2 Available at https://github.com/CNGL-repo/RMLProcessor

catenated with its camel case version. Although this function executes a simple string
transformation, functions in this method are generic and capable of complex data
transformations. Furthermore, functions work with any data format and can be reused
in the mapping. Listing 2 demonstrates how the function is called. In R2RML – and
by consequence RML – a Term Map generates an RDF term (see [1]). In our imple-
mentation, we introduced a new Term Map called a Function Valued Term Map that
generates RDF terms based on the application of a function. The parameters are also
Term Maps that are evaluated before the results are passed as arguments.
<#Camelize>
 rrf:functionName "camelize" ;
 rrf:functionBody """ function camelize (str) { var camelCaseString =
str.toLowerCase().replace(/[-_]+/g, ' ').replace(/[^\\w\\s]/g, ' ').replace(/
(.)/g, function($1) { return $1.toUpperCase(); }).replace(/ /g, '');
return "http://dacura.cs.tcd.ie/data/seshat/" + camelCaseString; } """ ; .

Listing 1: Declaring a function
<#Variable>
 rml:logicalSource [rml:source "data.csv"; rml:referenceFormulation ql:CSV];
 rr:subjectMap [rr:termType rr:BlankNode;];
 rr:predicateObjectMap [
 rr:predicateMap [rrf:functionCall [rrf:function <#Camelize> ;
 rrf:parameterBindings ([rml:reference "Variable"]);];];
 rr:objectMap [rr:parentTriplesMap <#Value>]].

Listing 2: Calling a function in a PredicateMap

4 Demonstration

The dataset used to demonstrate our approach comes from the Seshat: Global History
Databank [6]. This project is developing a knowledge base to describe human history
that is created by hand via a wiki where contributors are expected to adhere to certain
conventions to structure the facts. The Seshat dataset is currently made available for
analysis as CSV files by scraping the wiki pages. A current development within the
project is to gather the data into an OWL knowledge base, but predicates from the
dataset differ from the predicates defined in the OWL ontology. Thus, there is a need
to develop an approach to transform CSV values into the URIs of the ontology’s pred-
icates.

Fig. 1: RDF output.

For example, in the dataset one predicate is labeled as “Capital”, but in the ontolo-
gy the predicate is seshat:capital. Other examples include “Language” and “Supracul-
tural entity”. Table 1 shows a fragment of the data where the values for the column
“Variable” are transformed into predicates using the mapping from Listings 1 and 2.
Example RDF output is shown in Fig. 1.

Table 1: Excerpt of the CSV file shown as a table.

NGA Polity Section Variable Value From Fact Type Value Note
Latium ItRomPr General variables Capital Rome simple simple
Latium ItRomPr General variables Language Latin simple simple
Latium ItRomPr General variables Supracultural entity Greco-Roman simple simple

5 Conclusions and Future Work
Most tools to convert data to RDF rely on underlying technology for data manipula-
tion, but there is no manipulation language for CSV datasets. Moreover, when data
manipulation is needed for CSV datasets one depends on pre- or post-processing
techniques, which adds complexity to the uplift process. One solution is to incorpo-
rate functions in mappings, but the state-of-the-art does not offer a feasible way to do
so. We tackled this problem by presenting a more amenable method to incorporate
functions into mapping languages. We demonstrated our approach by extending
RML’s vocabulary and engine and applied it on a real world dataset.

Future work includes more use cases and experiments to compare performance and
expressiveness of our approach and other mapping languages. Since functions can be
considered software agents, one can also generate provenance information referring to
these functions. Inspiration can be drawn from [2], who proposed a method for creat-
ing provenance information while generating RDF.

Acknowledgements. This study is supported by: (i) CNPQ, National Counsel of
Technological and Scientific Development – Brazil; (ii) the Science Foundation Ire-
land ADAPT Centre for Digital Content Technology (Grant 13/RC/2106); (iii) John
Templeton Foundation grant to the Evolution Institute [https://evolution-
institute.org/project/seshat/]; (iv) the European Union Horizon 2020 ALIGNED
[www.aligned-project.eu] (Grant 644055).

6 References
1. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.:

RML: A Generic Language for Integrated RDF Mappings of Heterogeneous Data. In:
Workshop on Linked Data on the Web. (2014).

2. Dimou, A., De Nies, T., Verborgh, R., Mannens, E., and Van de Walle, R.: Automated
Metadata Generation for Linked Data Generation and Publishing Workflows. In:
Workshop on Linked Data on the Web. (2016).

3. Stadler, C., Unbehauen, J., Westphal, P., Sherif, M.A., Lehmann, J.: Simplified RDB2RDF
Mapping. In: Workshop on Linked Data on the Web. (2015).

4. Debruyne, C., O’Sullivan, D.: R2RML-F: Towards Sharing and Executing Domain Logic
in R2RML Mappings. In: Workshop on Linked Data on the Web (2016).

5. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between RDF
and XML with XSPARQL. Journal on Data Semantics 1(3) 147-185 (2012).

6. Turchin, P., Brennan, R., Currie, T., Feeney, K., Francois, P., Hoyer, D., Manning, J.,
Marciniak, A., Mullins, D., Palmisano, A., et al.: Seshat: The global history data-bank.
Cliodynamics: The Journal of Quantitative History and Cultural Evolution 6 (2015).

7. Slepicka, J., Yin, C., Szekely, P., Knoblock, C.: KR2RML: An alternative interpretation of
R2RML for heterogeneous sources. In: Proceedings of the 6th International Workshop on
Consuming Linked Data (2015).

