
Qanary – the Fast Track to Creating a Question
Answering System with Linked Data Technology

Kuldeep Singh1, Andreas Both2, Dennis Diefenbach3, Saedeeh Shekarpour4, Didier
Cherix6, and Christoph Lange15

1 Fraunhofer IAIS, Sankt Augustin, Germany, kuldeep.singh@iais.fraunhofer.de
2 Mercateo AG, Germany, andreas.both@mercateo.com

3 Laboratoire Hubert Curien, Saint-Etienne, France,
dennis.diefenbach@univ-st-etienne.fr
4 Knoesis Center, USA, saeedeh@knoesis.org

5 University of Bonn, Germany, langec@cs.uni-bonn.de
6 FLAVIA IT-Management GmbH, Germany, didier.cherix@gmail.com

Abstract. Question answering (QA) systems focus on making sense out of data
via an easy-to-use interface. However, these systems are very complex and inte-
grate a lot of technology tightly. Previously presented QA systems are mostly sin-
gular and monolithic implementations. Hence, their reusability is limited. In con-
trast, we follow the research agenda of establishing an ecosystem for components
of QA systems, which will enable the QA community to elevate the reusability
of such components and to intensify their research activities.
In this paper, we present a reference implementation of the Qanary methodology
for creating QA systems. Qanary relies on linked data vocabularies and provides
a fast track to integrating QA components into a light-weight, message-driven,
component-oriented architecture.

Keywords: Software Reusability, Question Answering, Semantic Search, Ontol-
ogy, Annotation Model

1 Motivation

The Web of Data is every day. Researchers have developed a variety of monolithic
Question Answering (QA) systems (e.g., [3, 2]) to make sense out of the enormous
amount of available web data. Although the field of QA is large and many state-of-the-
art QA systems exist, researchers are facing difficulties to reuse them because of their
focus on implementation details and for lack of a generic approach for designing QA
systems. For example, PowerAqua [3] links information available across distributed
semantic resources to answer queries whereas TBSL [8] presents an approach that
parse the question to produce SPARQL template that depictis the internal structure of
the question. However, TBSL provides better results regarding linguistic analysis of
questions, whereas PowerAqua is limited w.r.t. linguistic coverage of questions. Com-
bining the capabilities of both systems will provide better functionalities. However,
these systems are monolithic and they cannot easily be combined, which reduces their
applicability to new domains and the options for synergy effects.



In other research areas, such as service-oriented architectures or cloud computing,
the vision of building an ecosystem of components within a dedicated field has already
proven its significance for the rapid advancement of research. Therefore, establishing
a methodology – on a conceptual and implementation level – is considered crucial for
managing the challenges of question answering. The Qanary approach [1] provides
such a methodology. Driven by linked data technology and particularly by vocabularies,
it integrates the knowledge of QA components into an overall component-based QA
system. However, the conceptual layer for QA systems leaves the implementation of
the QA system open.

We have implemented the Qanary using a message-driven and light-weight archi-
tecture that provides a fast track for integrating QA components, and uses standard
RDF technology. We present a reference implementation of a framework for QA sys-
tems, manifesting the abstract/conceptual layer of Qanary. The framework covers the
main features of component-based systems, i.e., interoperability, exchangeability and
reusability, flexible granularity, as well as isolation of components (cf. [1]). Therefore,
a sophisticated framework level is achieved while hiding implementation details of the
integrated components and establishing the qa vocabulary [7] as representation of the
knowledge about the user’s question and the search query derived from it.

Following our long-term research agenda, this framework provides a significant step
towards a best-of-breed approach for integrating the most suitable QA components for
the planned domain of application. As components integrated by this framework, we
initiate hereby an ecosystem for QA components and promote the reusability of existing
technology. Hence, efficiency for establishing new QA systems is increased while the
effort for providing reusable components is reduced.

The next section covers our approach to create a QA system following the Qanary
methodology. We also briefly introduce the qa vocabulary. Section 3 presents a method-
ology for vocabulary-driven integration of QA components. Section 4 concludes.

2 Approach

2.1 Requirements for Open Question Answering systems

We have identified four key requirements, namely, interoperability, exchangeability and
reusability, flexible granularity, and isolation for open QA systems [1]. The QA com-
ponents are heterogeneous in their implementation, therefore, we have identified that
a consistent standard interaction level, i.e., a (self-describing) abstraction of the imple-
mentation is needed to promote interoperability. This abstraction will further promote
reusability to enhance efficiency of the user to build a new QA system. Hence, ex-
changeability and reusability are important requirements. Isolation is another identified
requirement where each component should run independently of other components,
i.e., it is enabled to be loosely coupled with QA systems. Flexible granularity of the
components is required so they can be integrated at any step of the QA process, i.e., in
contrast to other QA frameworks the granularity is not pre-defined and therefore open
for future (special or general) components. To the best of our knowledge, no existing
QA system or framework meets these requirements. Therefore, in our concrete imple-
mentation of the Qanary methodology, we aim at meeting these requirements.



2.2 The qa Vocabulary

In [7], we presented a vocabulary for question answering (abbreviated as qa), for rep-
resenting the knowledge about a question within a QA system. Following the Qanary
methodology, the qa vocabulary7 is used to represent transitional results during the
QA process, i.e., each component increases the knowledge about the given question
by creating or enriching instances of the concepts qa:Question, qa:Dataset or
qa:Answer. The qa vocabulary provides the main concepts needed to express the
information for annotating a question with knowledge that was computed during the
QA process. Each time a component is executed, properties (or information) such as
provenance of annotation, score of annotation, relation between annotations, etc., are
annotated to the message to make it available for subsequent components in the QA
process. Hence, after every step of the QA process, the knowledge base (short: KB) is
enriched with additional information about the question.

2.3 Integration by Vocabulary Alignment

We consider the fact that Qanary should not overrule existing (domain-specific) vocab-
ularies. Therefore, it is intended to align existing vocabularies to the qa vocabulary,
s.t., the computed data is available in a normalized representation and can easily be
reused by other component just by knowing the concepts of qa. This can be done by
using axioms or rules. The OWL subclass/sub property or class/property equivalence
might be used to implement alignment axioms or rules. A reasoner or a rule engine can
be used to map information from the Qanary KB to the input representation understood
by a QA component (if the latter is RDF-based). A reasoner further translates the RDF
output of a QA component to the extended vocabulary for uniformity, then adds it to
the KB. An alternative option is to use SPARQL CONSTRUCT or INSERT queries to
translate the data computed by a component to a representation that is aligned with the
qa vocabulary.

3 Methodology for Vocabulary-driven Integration of Question
Answering Components

To illustrate the power of the Qanary methodology, we took three independent compo-
nents – DBpedia Spotlight [4], PATTY [5], and SINA [6] – arranged in the same order
in the pipeline to build an exemplary QA system (cf. [1]). Here, we describe our ap-
proach of integrating them using Qanary with minimal programming effort. Our aim
here was not to develop an actual QA system or to answer some specific questions by
depicting a QA process, but to support and evaluate our claim that it is possible to reuse
existing QA components by creating a new abstraction level for interoperability.

Qanary enriches a process-independent KB in each step. Unlike in a traditional QA
pipeline, the output of the first component, DBpedia Spotlight, is not directly passed to
the second component, PATTY, but is fed into a KB via the abstract level defined by
the qa vocabulary and by aligning existing vocabularies to it. The second component

7 cf., https://github.com/WDAqua/QAOntology

https://github.com/WDAqua/QAOntology


needs particular input, and it fetches required input directly from the KB and pushes its
output back to KB. The third component does the same. Each component can access
all the messages generated by the previous components stored in a triple store through
SPARQL SELECT queries and can update that information using SPARQL UPDATE
queries. We follow a three-step process to implement an exemplary QA system:
1. Information gathering: In general, every component has a particular need for in-
formation as input. To ensure free access to the required information, every QA com-
ponent is enabled to execute SPARQL queries and can thus retrieve any knowledge
about the question. As the qa vocabulary provides a normalized representation of the
data, each component only has to know qa to access the data. For example, DBpe-
dia Spotlight needs a text query as its input. It might fetch it from the question URI
(<URIQuestion> a qa:Question), following linked data principles. Additional
RDF information about the question can be retrieved by executing a SPARQL query,
e.g., to fetch named entities already annotated within a textual question. To access ex-
isting components, we have implemented light-weight wrappers that send information
to the particular component to wrap around and perform its action. The sample code8 is
shown below:
// Execute a SPARQL query to retrieve the question URI
String sparqlQuery = "PREFIX qa: <http://www.wdaqua.eu/qa#>

SELECT ?questionURI FROM " + namedGraph + "
WHERE {?questionURI a qa:Question}";

QueryExecution qExe = QueryExecutionFactory.sparqlService(endpoint,
QueryFactory.create(sparqlQuery));

ResultSet result = qExe.execSelect();
URL uriQuestion = result.next().getResource("questionURI");

// Retrieve the question using an HTTP request
RESTClient myRestClient = new RESTClient();
String question = rstclnt.getResults(uriQuestion.toString());

// Send the question to the DBpedia Spotlight (local, port 8099)
String serviceUrl = "http://localhost:8099/" +

URLEncoder.encode(question, "UTF-8");
String serviceResult = myRestClient.getResults(serviceUrl);

2. Information retrieval: Each component performs actions on extracted information
and produces some results. In the next step, the wrapper retrieves the computed infor-
mation from the component. Before pushing it to the KB, it is stored in a temporary
location and the defined bindings to the qa vocabulary are applied.
3. Store results in triple store: After binding is applied on the retrieved information,
the information is pushed to the KB, i.e. a triple store.
Hence, following Qanary all QA components are independent from each other and
reusable. For example, if a new state-of-the-art named entity disambiguation (NED)
method evolves, or new input types come into the picture, researchers just need to re-
place the NED (in our case study this is DBpedia Spotlight), following above mentioned
three steps and the new component can easily be integrated in the QA system. Addition-
ally, it becomes reusable for any other QA system following the Qanary methodology.

A possible extension of the described QA system might incorporate support for
spoken questions. Hence, a component C1 is required that translates an audio stream

8 using Apache Jena: https://jena.apache.org/

https://jena.apache.org/


to a textual question, which is required by DBpedia Spotlight. The qa vocabulary is
extensible and already covers the requirements for audio streams. Now the individual
vocabulary of C1 needs to be aligned to qa. To integrate C1 into the QA system, a
light-weight wrapper has to be implemented that fetches the required information and
passes it to C1. The above mentioned three-step process will be followed and C1 can
be integrated easily and efficiently into the QA system.

For details of the implementation of our exemplary QA system, please refer to our
case study at https://github.com/WDAqua/Pipeline.

4 Conclusion

Qanary establishes a methodology independent from the process actually implemented
by concrete QA systems. Hence, it is open for extension and ready for any new idea of
how to solve QA tasks. Additionally our approach is built on top of formal logic to sup-
port reasoning and querying in a well-defined way and is independent from the actual
implementation (the case study has to be considered as just one possible implementa-
tion). When a new requirement evolves, or a new component needs to be included in the
pipeline, this can be accomplished via a “fast track” with minimal programming effort.
Following the Qanary methodology, we meet all the requirements for a vital ecosystem
of QA system components that are actually reusable. Hence, Qanary constitutes the first
logical step towards actual open QA systems.

Acknowledgements Parts of this work received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
No. 642795, project: Answering Questions using Web Data (WDAqua).

Bibliography

[1] Andreas Both, Dennis Diefenbach, Kuldeep Singh, Saedeeh Shekarpour, Didier
Cherix, and Christoph Lange. Qanary – a methodology for vocabulary-driven open
question answering systems. In ESWC, 2016. to appear.

[2] D. Damljanovic, M. Agatonovic, and H. Cunningham. Freya: An interactive way
of querying linked data using natural language. In ESWC Workshops, 2011.

[3] V. Lopez, M. Fernández, E. Motta, and N. Stieler. PowerAqua: Supporting users in
querying and exploring the semantic web. Semantic Web, 3(3):249–265, 2011.

[4] P. N. Mendes, M. Jakob, A. García-Silva, and Ch. Bizer. DBpedia Spotlight: shed-
ding light on the web of documents. In I-SEMANTICS, 2011.

[5] N. Nakashole, G. Weikum, and F. M. Suchanek. PATTY: A taxonomy of relational
patterns with semantic types. In EMNLP-CoNLL, 2012.

[6] S. Shekarpour, E. Marx, A.-C. Ngonga Ngomo, and S. Auer. SINA: Semantic
interpretation of user queries for question answering on interlinked data. Web Se-
mantics: Science, Services and Agents on the WWW, 30:39–51, 2015.

[7] K. Singh, A. Both, D. Diefenbach, and S. Shekarpour. Towards a message-driven
vocabulary for promoting the interoperability of question answering systems. In
10th IEEE Int. Conf. on Semantic Computing (ICSC), 2016.

[8] Ch. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo, D. Gerber, and Ph.
Cimiano. Template-based question answering over RDF data. In WWW, 2012.

https://github.com/WDAqua/Pipeline

	Qanary – the Fast Track to Creating a Question Answering System with Linked Data Technology

