
PepeSearch: Easy to use & easy to install
semantic data search

Guillermo Vega-Gorgojo1, Laura Slaughter2, Martin Giese1,
Simen Heggestøyl1, Johan Wilhelm Klüwer3, and Arild Waaler1

1 Department of Informatics, University of Oslo, Norway
{guiveg, martingi, simenheg, arild}@ifi.uio.no

2 Oslo University Hospital, Norway laura.slaughter@gmail.com
3 Det Norske Veritas (DNV), Høvik, Norway Johan.Wilhelm.Kluewer@dnvgl.com

Abstract. Despite the increasing availability of RDF datasets, search-
ing and browsing semantic data is still a daunting task for mainstream
users. With PepeSearch, it is easy to query an arbitrary triple store with-
out previous knowledge of RDF/SPARQL. PepeSearch offers a form-
based interface with simple and intuitive elements such as drop-down
menus or sliders that are automatically mapped from the ontological
structures of the target dataset. In this demonstration we will show how
to set up a PepeSearch instance, how to formulate queries and how to
retrieve results.

1 Introduction

An increasing number of RDF datasets is available across all domains and, as a
result, many non-programmers are expressing a need for exploring these datasets.
The problem is that accessing semantic data requires proficiency in SPARQL, as
well as familiarity with the specific vocabularies or ontologies employed by the
dataset. Alternatives to searching directly with SPARQL are mainly visual query
approaches, especially graph-based query editors, e.g. QueryVOWL [1], NITE-
LIGHT [2]. While this type of interfaces can easily exploit the graph structure
of RDF and SPARQL, mainstream users are not particularly comfortable with
graph visualizations [3, 4], making this approach questionable for this user group.
Moreover, many common querying tasks do not require the expressivity of full
graph-based querying.

We propose PepeSearch [5], a portable form-based search interface for query-
ing semantic RDF datasets specifically aimed at helping mainstream users in
their search tasks. Forms allow the user to exploit the ontology without manip-
ulation of graph structures. Instead, the end-user employs drop-down menus,
free-text entry fields, and sliders to specify classes, properties, strings, and data
value ranges of their queries. This frees the user from having to invest a signifi-
cant amount of time learning technical characteristics of the dataset, e.g., what
an OWL class is or what ontologies are used to describe the data.

Form-based interfaces tend to be designed for specific search tasks in a single
domain. User experience and design work is therefore linked to a specific context.



2

In contrast, PepeSearch exploits the self-describing nature of RDF and schema-
level queries in SPARQL to develop a generic and portable solution that can
run on any SPARQL endpoint. We allow the mainstream user to pose queries
ranging from simply retrieving the members of a class, to queries joining multiple
concepts and setting restrictions on datatype properties. So far, PepeSearch has
been applied for use in two different contexts: government organizational data
and healthcare. We will demonstrate PepeSearch at ESWC 2016: how to set up
a PepeSearch instance, how to formulate queries and how to retrieve results.

2 Overview of PepeSearch

PepeSearch is an open source project under the Apache license developed at the
University of Oslo4. It consists of the SPARQL analyzer5, the PepeSearch com-
ponent6, and a text search engine – see Fig. 1. The provided GitHub repository
also includes a screencast7 and a live demo8.

The analyzer is employed in a bootstrapping stage to gather information
about the target data set. Through a series of generic SPARQL queries, the
analyzer obtains the classes employed in the dataset, their datatype properties,
and the connections to other classes through an object property or through a
subclass relation. The result is a data schema in the JSON format.

The obtained data schema can then be used to configure a PepeSearch in-
stance. The query builder component is in charge of preparing a suitable view
for querying the dataset. For an arbitrary RDF class, a form block is created, in
which datatype properties are mapped to widget elements. In order to support
multi-class queries, a collapsible form block is included for each RDF class that
is connected with an object property to the selected class – see Fig. 2(a) for an
example. The results viewer element is in charge of sending the query to the
SPARQL endpoint and presenting the results in a tabular representation – see
Fig. 2(b). Browsing is supported through the instance viewer that obtains all
the data about a particular individual with links to other connected instances –
see Fig. 2(c).

The text search engine is an optional component that allows dynamic term
suggestions during query specification. This is employed to provide autocomplete
capabilities for the text fields of a class, e.g. to suggest names such as “Martin”
or “Maria” after typing “mar” in a name textbox.

3 Hands on with PepeSearch

To illustrate the operation of PepeSearch, we will employ a sample dataset con-
taining health records of fictitious patients. Anonymized patient data has been

4 http://www.uio.no/
5 https://github.com/simenheg/sparql-endpoint-analyzer
6 https://github.com/guiveg/pepesearch
7 http://folk.uio.no/simenheg/pepesearch.webm
8 http://sws.ifi.uio.no/project/semicolon/search/



3

Fig. 1. Logical architecture of PepeSearch.

provided by our hospital project partner in the form of tables from a widely used
hospital records application. It describes health care processes, with associated
diagnoses and medical personnel in various roles, supported by a body of code
lists. This data is mapped into RDF according to an ontology with three main
parts: (i) excerpts from the Disease Ontology9 to cover the medical conditions
that appear in the data, (ii) the Information Artifact Ontology10 for documents,
and (iii) local extensions for measurements of vital signs and for a part/whole
hierarchy of health care processes. Upper classes and relations are provided by
the OBO Relations Ontology11.

As an example, we show how to obtain a set of patients between 30–50 yrs
of age that have suffered from an intestinal disease. Use of semantic technologies
for cohort identification has been proposed [6], and is an important application
area. We first run the SPARQL analyzer to generate the data schema out of the
dataset structure with all the classes, properties and value types. PepeSearch
can then be used to fulfill the aforementioned information need in this way:

1. PepeSearch presents a list of the top classes available in the dataset.
2. We select the concept “human being”.
3. PepeSearch presents a form block for the “human being” class and a list of

collapsibles corresponding to classes directly connected to “human being” in
the dataset, e.g. “diagnosis” or “health care encounter”.

4. We set the restrictions required for this search task: in the “human being”
class we select “patient” as a more specific type; we use the age slider to set

9 http://disease-ontology.org/
10 https://github.com/information-artifact-ontology/IAO/
11 https://github.com/oborel/obo-relations



4

the appropriate range; and we select the “intestinal disease” after expanding
the “disposition” collapsible. A snapshot of this query is shown in Fig. 2(a).

5. We push the “Get results” button at the top right corner of the search
interface.

6. Behind the scenes, PepeSearch generates a SPARQL query from the form
that is sent to the SPARQL endpoint.

7. With the response, PepeSearch prepares a tabular representation of the re-
sults (see Fig. 2(b)).

8. We can navigate through the results by following the links, e.g. Fig. 2(c)
shows the information of one of the patients found.

4 Conclusions

PepeSearch is a portable form-based interface for searching semantic data sets
devised for mainstream users. In this demonstration we will present the different
components of PepeSearch. We will use the SPARQL analyzer to gather the data
schema of several triple stores, and we will then use PepeSearch to formulate
queries and retrieve results.

Acknowledgements

This work has been partially funded by the Norwegian Research Council through
the HealthInsight project (NFR 247784/O70), and the European Commission
through the Optique (FP7 GA 318338), and BYTE (FP7 GA 619551) projects.

References

1. Haag, F., Lohmann, S., Siek, S., Ertl, T.: QueryVOWL – Visual Composition of
SPARQL Queries. In: Proceedings of the 12th European Semantic Web Conference
(ESWC2015), Portoroz, Slovenia (2015)

2. Russell, A., Smart, P.R., Braines, D., Shadbolt, N.R.: Nitelight: A graphical tool for
semantic query construction. In: Semantic Web User Interaction Workshop (SWUI
2008), Florence, Italy (2008)

3. Viégas, F.B., Donath, J.: Social network visualization: Can we go beyond the graph?
In: Proceedings of the Computer Supported Cooperative Work (CSCW’04), Work-
shop on Social Networks. Volume 4., Banff, Canada (2004) 6–10

4. Elbedweihy, K., Wrigley, S.N., Ciravegna, F.: Evaluating semantic search query
approaches with expert and casual users. In: Proceedings of the 11th International
Conference on The Semantic Web (ISWC 2012), Boston, MA, USA, Springer-Verlag
(2012) 274–286

5. Vega-Gorgojo, G., Giese, M., Heggestøyl, S., Soylu, A., Waaler, A.: PepeSearch:
Semantic data for the masses. PLOS ONE (2016) URL: http://dx.doi.org/10.
1371/journal.pone.0151573.

6. Pathak, J., Kiefer, R.C., Chute, C.G.: Using semantic web technologies for cohort
identification from electronic health records for clinical research. AMIA Summits
Transl Sci Proc 2012 (2012) 10–19



5

Fig. 2. Snapshots of PepeSearch.


